How to solve 1/x-1-1/x=1/x+3-1/x+4 ?

Welcome to my article1/x-1-1/x=1/x+3-1/x+4 ?. This question is taken from the simplification lesson.
The solution of this question has been explained in a very simple way by a well-known teacher by doing addition, subtraction, and fractions.
For complete information on how to solve this question1/x-1-1/x=1/x+3-1/x+4 ?read and understand it carefully till the end.

Let us know how to solve this question1/x-1-1/x=1/x+3-1/x+4 ?es

First write the question on the page of the notebook

1/x-1-1/x=1/x+3-1/x+4

can also write it like this,

\displaystyle \frac{\text{1}}{x}\text{-1-}\frac{1}{x}\text{=}\frac{1}{x}\text{+3-}\frac{1}{x}\text{+4}

\displaystyle \frac{\text{1}}{x}\text{-}\frac{1}{x}\text{-1=}\frac{1}{x}\text{-}\frac{1}{x}\text{+4+3}

\displaystyle (\frac{\text{1}}{x}-\frac{1}{x}\text{)-1=(}\frac{1}{x}-\frac{1}{x}\text{)+7}

\displaystyle \frac{\text{1}}{x}\text{-1}-\frac{1}{x}\text{=}\frac{1}{x}\text{+4}-\frac{1}{x}+3

\displaystyle \frac{\text{1}}{x}\text{-1}-\frac{1}{x}\text{=7+}\frac{1}{x}-\frac{1}{x}

Multiplyto both sides ,

take like trams,

\displaystyle -x+1-1=7+\frac{1}{x}-\frac{1}{x}.x

simplify the arithmetic,

\displaystyle -x=7+\frac{1}{x}-\frac{1}{x}.x

expand parentheses,

\displaystyle -x=7x+\frac{{1x}}{x}-\frac{1}{x}.x

multiply the fractionses,

\displaystyle -x=7x+1+\frac{{-1x}}{x}

simple arithmetic,

\displaystyle -x=7x

group all x turns to the left of the equation,

\displaystyle -x=7x

subtract 7x form both side,

\displaystyle -x-7x=7x-7x

simplify the arithmetic,

\displaystyle -8x=7x-7x

simplify the arithmetic,

\displaystyle -8x=0x

simplify the right side,

\displaystyle -8x=0

Is o late the x,