# How to solve ; (2x^3+9x^2+3x-4)÷(x+4) long division

Welcome to my article How to solve ; (2x^3+9x^2+3x-4)÷(x+4) long division. This question is taken from the simplification lesson.
The solution of this question has been explained in a very simple way by a well-known teacher by doing addition, subtraction, and fractions.
For complete information on how to solve this question How to solve ; (2x^3+9x^2+3x-4)÷(x+4) long division, read and understand it carefully till the end.

Let us know how to solve this question How to solve ; (2x^3+9x^2+3x-4)÷(x+4) long division.

First write the question on the page of the notebook,

## How to solve ; (2x^3+9x^2+3x-4)÷(x+4) long division.

First of all we will write it like this,

\displaystyle 2{{x}^{3}}+9{{x}^{2}}+3x-4\div \left( {x+4} \right)\text{ }

\displaystyle 2{{x}^{3}}+9{{x}^{2}}+3x-4\times \frac{1}{{\left( {x+4} \right)}}\text{ }

\displaystyle \frac{{(2{{x}^{3}}+9{{x}^{2}}+3x-4)\times 1}}{{\left( {x+4} \right)}}\text{ }

\displaystyle \frac{{(2{{x}^{3}}+9{{x}^{2}}+3x-4)}}{{\left( {x+4} \right)}}\text{ }

\displaystyle \frac{{(2{{x}^{3}}+{{x}^{2}}+8{{x}^{2}}-x+4x-4)}}{{\left( {x+4} \right)}}\text{ }

\displaystyle \frac{{2{{x}^{3}}+{{x}^{2}}-x+8{{x}^{2}}+4x-4}}{{\left( {x+4} \right)}}\text{ }

\displaystyle \frac{{x(2{{x}^{2}}+x-1)+4(2{{x}^{2}}+x-1)}}{{\left( {x+4} \right)}}\text{ }

\displaystyle \frac{{(2{{x}^{2}}+x-1)(x+4)}}{{\left( {x+4} \right)}}\text{ }

\displaystyle (2{{x}^{2}}+x-1)\times \frac{{(x+4)}}{{\left( {x+4} \right)}}\text{ }

\displaystyle (2{{x}^{2}}+x-1)\times \frac{{(1)}}{{\left( {1} \right)}}\text{ }